

Department: Electronics & Comm. Engineering Total Marks: 40 Marks

Faculty of Engineering

Course Title: Technical Reports Date: January 2012 (First term) Course Code: EEC21H3

Year: 2rd

Allowed time: 2 hrs

No. of Pages: (1)

Remarks: (answer the following questions... assume any missing data... answers should be supported by sketches...etc)

Ouestion	number	(1)
CAMPOCHAIN.	BE SHEER RANGE IN	

- (a) Explain the checklist items you might use to guide revisions for completing a final report draft.
- (b) Write a short note about collaborative writing in technical writing.

Question number (2)

- a) (i) Explain the factors that help you judge the value of information you find on the web site
 - (ii) What type of information that might be included in an appendix of a technical report
- b) Create a checklist for the following types of documents:
 - (i) Internal and External Proposals
 - (iii) Resume

Question number (3)

- (a) Explain the basic rules to use when you include graphics within documentation.
- (b) Explain with drawing a flowcharts illustrating an organizational charts in a project management structure.

Good Luck

Course Coordinator: Prof. Mustafa Mahmoud Abd Elnaby

Question (3)

- (a) Compare between common mode and differential mode, support your answer with sketches.
- (b) Prove an expression for the closed loop input impedance of the circuit shown in Figure (3).

Figure (3)

(c) Find V_{out} in terms of V_1 and V_2 for the circuit shown in Figure (4).

Question (4)

- (a) State two types of oscillators.
- (b) Sketch a circuit for Wien-bridge oscillator. Drive an expression for the attenuation and the resonant frequency of Wien-bridge oscillator.
- (c) Determine the value of R_f necessary for the circuit in shown Figure (5) to operate as an oscillator and determine the frequency of oscillation.

Figure (5)

Best Wishes of Success

Department: Electronics and Electrical Communication Eng. Total Marks: 90 Marks

Faculty of Engineering

Course Title: Electronic Circuits (1)

Course Code: EEC 2103

Allowed time: 3 hrs

Year: 2nd
No. of Pages: (2)

Remarks: (answer the following questions... assume any missing data... answers should be supported by sketches)

Question (1)

Date: 16 /1/2012

- (a) Discuss the reasons for output waveform distortion for amplifier (Support your answer with sketches).
- (b) For the circuit shown in Figure (1)
 - (i) Calculate the overall gain.
 - (ii) Calculate the input impedance of the first stage and the output impedance of the second stage.

Question (2)

- (a) Compare between Class A, Class B, Class AB, and Class C from points of view location of operating point, dc power, ac power, and efficiency (Put your answer in a table). Sketch an equivalent circuit for each class.
- (b) For the circuit shown in Figure (2), Find F_L,F_H, and bandwidth (Given C_{bc}=10pf, C_{be}=10pf)

(b) Apply Adams-Bashforth three-step method to obtain an approximate solution for the IVP $y' = -y x \sin x$, $x \in [0, 2]$, y(0) = 3

with h = 0.5, use the mid-point method to get the required initial values.

Problem number (4) (16 Marks)

(a) Solve the following BVP using the finite difference method.

$$y'' + y' + 2y = \cos x$$
 $y(0) = y(1) = 1$, $0 \le x \le 1$, $h = 0.2$

(b) Use the linear shooting method to approximate the solution of the BVP

$$y'' = x y' + 2y - x$$
 $y(0) = -1$, $y(1) = 0$, $h = 1/2$

By applying Euler's method.

Problem number (5) (16 Marks)

(a) Approximate the solution of the following parabolic partial differential equation

$$\frac{1}{4} U_{xx}(x,t) = U_{t}(x,t) \quad 0 \le x \le 1 \quad \text{and} \quad 0 \le t \le 0.15, \text{ where}$$

$$U(0,t) = 0$$
, $U(1,t) = 30$ and $0 \le t \le 0.15$

$$U(x,0) = 60 \, \big(\, x^2 - x/2 \, \big) \, , \quad 0 \le x \le 1 \ \, , \ \, \text{use} \, \, h = 0.2 \ \, , \, \, k = 0.05 \, \,$$

(b) Solve Laplace's equation for a square $0 \le x \le \pi$, $0 \le y \le \pi$ where

$$U_{xx}(x, y) + U_{yy}(x, y) = 0$$

subject to the specified boundary conditions

$$U(x,0) = U(\pi, y) = U(x, \pi) = 0,$$
 $U(0, y) = \sin^2 y, 0 \le y \le \pi$ with $h = k = \pi/3$

Good luck

Dr. Manal Mohamed Hekal

Dr. Waheed Kamal Zahra

Physics & Engineering Mathematics Department Total Marks: 85 Marks

Faculty of Engineering

Course Title: Engineering Mathematics (3) a Course Code: PME2110

Date:23/1/2012 (First term)

Year: 2nd Electronics and Electrical Communications Engineering. Allowed time: 3 hrs

No. of Pages: (2)

Remarks: (Answer the following questions. Assume any missing data...)

Problem number (1)

(20 Marks)

(a) Find the Fourier transform of the function

$$f(x) = \begin{cases} e^{2ix} & -1 < x < 1 \\ 0 & otherwise \end{cases}$$

- (b) Let $f(x) = 2x^2 e^x + 1$. Construct a Lagrange polynomial of degree two or less using $x_0 = 0$, $x_1 = 0.4$, $x_2 = 1.2$. Then approximate f(1).
- (c) For the following values of the Bessel function $J_0(x)$, use Newton's forward and backward difference formulas to estimate the values of $\ J_{\scriptscriptstyle 0}(1.72)\ ,\ J_{\scriptscriptstyle 0}(1.95)$.

X	1.7	1.8	1.9	2.0
$J_0(x)$	0.3979849	0.3399864	0.2818186	0.2238908

(d) Construct a natural cubic Spline that interpolates the function $f(x) = 1/(1+x^2)$ at x = -1, 0, 1. Compare the interpolate values at x = -0.5, 0.5 with the true values.

Problem number (2) (17 Marks)

(a) Use Taylor's series to derive the following approximation formula for the third derivative of f(x)

$$f'''(x) \cong \frac{1}{h^3} [-f(x) + 3f(x+h) - 3f(x+2h) + f(x+3h)]$$

(b) From the following table find f'(6.4), f''(6.2)

X	6.1	6.2	6.3	6.4
f(x)	-0.1998	-0.2223	-0.2422	-0.2596

(c) Approximate the integral $\int_{0}^{2} \ln\left(\frac{e^{x}+2}{\cos x+2}\right) dx$, using the Simpson's composite rule with n=6.

Problem number (3) (16 Marks)

(a) Use the third order Taylor's method to get the solution of the initial value problem $y' = -y \cos x$, $x \in [0,1]$, y(0) = 2, with n = 4.

(c) Determine and sketch the peak-to peak voltage and period of the output waveform for the circuit shown in Fig.1. The maximum output voltage level that the op-amp comparator is \pm 12V.

Course Coordinator: Prof. Mustafa Mahmoud Abd Elnaby

Page: 2/2

Department: Electronics & Comm. Engineering Total Marks: 90 Marks

Year: 2nd

Course Title: Electronic Measurements (1)

Course Code: EEC2105

Allowed time: 3 hrs

No. of Pages: (2)

Date: January 2012 (First term)

Thowed time. 5 ms

140. 01 1 ages. (2)

Remarks: (answer the following questions... assume any missing data...

Question number (1) (25 Marks)

- (a) Define and explain the following terms:
 - 1. Instrument insertion error 2. Static and dynamic errors
 - 3. Accuracy and precision of measurements
- (b) A voltmeter having a sensitivity of $1000~\Omega$ / V reads 100~V on its 150V scale when connected across an unknown resistor in series with a milliammeter. When the milliammeter reads 5mA., calculate:
 - 1. Apparent resistance of the unknown resistor
 - 2. Actual resistance of the unknown resistor
 - 3. Error due to the loading effect of the voltmeter. (Neglect the resistance of the milliammeter)
- (c) Current was measured during a test as 30.4A, flowing in a resistor of 0.105Ω . It was discovered later that the ammeter reading was low by 1.2% and the marked resistance was high by 0.3%. Find the true power as a percentage of the power that was originally calculated.

Question number (2) (25 Marks)

- (a) Describe the principle of operation of a displacement transducer employing each of the following principle: (i) Resistive transducer (ii) Hall effect devices
- (b) A capacitive transducer is made up of two concentric cylinder of length 20 mm. The outer diameter of the inner cylinder is 3 mm and the dielectric medium is air. The inner diameter of the outer cylinder is 3.1 mm. Calculate the change in capacitance if the inner electrode is moved through a distance of 2 mm. ($\varepsilon_0 = 8.85 \times 10^{-12}$ F/m).
- (c) Explain the working principle of a linear variable differential transducer (LVDT) and its applications as a displacement transducer.

Question number (3) (20 Marks)

- (a) Sketch the circuit diagram of 555 timer chip and explain its operation
- (b) Explain how 50% duty cycle can be obtained using 555 timer.
- (c) Determine the frequency of oscillation of a phase shift oscillator with three section feedback network consisting of 13 Ω resistors and a 100 μ F capacitors.

Question number (4) (20 Marks)

- (a) Explain the construction and working of a true RMS voltmeter
- (b) Explain with help of the block diagram, the operating principle of a ramp type digital voltmeter and explain its operation.

- A. Find and plot the electric field intensity and potential everywhere due to a point charge Q which located at the center of a spherical conducting shell of radii a and b. (5 Marks)
- B. The plane z=0 is a perfectly conducting surface. A point charge of 5 nC is located at A(2, -3, 6), and a point charge of -8 nC is located at B(4, 3, 1).
 - i- Determine V at a point midway between the two charges.
 - ii- Find y if V=0 at C(5, y, 1).

(8 Marks)

C. Evaluate the force produced on a square loop connecting points A(1,0,0), B(3,0,0), C(3,2,0) and D(1, 2, 0) which carries a current of 2 mA in counterclockwise direction due to a current carrying conductor of 15 A in the y-axis. (7 Marks)

04:

(25 Marks)

- A. Drive an expression for the magnetic field strength due to an infinite line carries current I directed in positive z-axis direction.

 (7 Marks)
- B. Evaluate the magnetic field strength at the point P(2, 2, 0) at the center of square loop of 2 meter length located at z = 0 plane and carries current 5 A in counterclockwise direction as shown in the figure.
 (8 Marks)
- C. Let a magnetic flux density $B = (0.5 \text{ x}) a_x$ Tesla as in the figure. The position of the sliding bar is given by $x = 4t-2t^2$ meter. If the separation of the rails is 10 cm.
 - i- Calculate the voltmeter reading at t = 0.5 second
 - ii- Calculate the voltmeter reading when x=1 meter
 - iii- Plot the voltmeter reading for 0 < t < 3 second

(10 Marks)

TANTA INIVERSITY

Faculty of ENGINEERING

DEPARTMENT OF ELECTRICAL POWER AND MACHINES ENGINEERING EXAMINATION (SECOND YEAR) STUDENTS OF ELECTRICAL ENGINEERING

COURSE TITLE: ELECTROMAGNETIC PIELDS

COURSE CODE: EPW/2104/EPW2142

DATE: 09/01/2012

TERM: FIRST

TOTAL ASSESSMENT MARKS: 85

TIME ALLOWED: 3 HOURS

Makes:

Q1:

Systematic arrangement of calculations and clear neat drawings are essential.

Any data not given is to be assumed — Answer as many questions as you can.

الإمدَحان مكون من به أسئلة في ورافتين

Answer as brief as possible

(20 Marks)

- A. Using Gauss's law, derive an expression for the electric field intensity E at a point P a radial distance a meter from a uniformly charged infinite line by ρ₁ C/m. (5 Marks)
- B. Let a point charge Q1 = 25 nC be located at point P₁ (4, -2, 7) and a charge Q₂ = 60 nC at P₂ (-3, 4, -2) in free space.
 - i. Find E at P3 (1, 2, 3).
 - ii. Specify at what point on the y-axis is $E_x = 0$.
 - iii. Determine the location of a point charge $Q_3 = -30$ nC to cancel the field at the origin.
 - iv. How much electric flux leaves the surface of a sphere of radius 10 m centered at the origin? (10 Marks)
- C. A volume charge is distributed throughout a sphere of radius a meter and centered at the origin with uniform density p C/m³. Rvaluate the electric field and total energy stored due to this charge distribution. (5 Marks)

12:

(20 Marks)

- A Find the work done in moving a 5 μ C charge from the P1(1,8,5)to P(2, 18,6) through electric field $E = (-8xy)\overline{a}_x (4x^2)\overline{a}_y + \overline{a}_z V/m$ along the path: $y = 3x^2 + z$, z = x + 4 (5 Marks)
- B. Consider a circular line charge (ring) is placed in z=0 plane and centered at the origin in which the line charge density is k c/m. Calculate the electric potential at a point at z-axis away distance h from the center.

 (5 Marks)
- C. A potential field in the free space is defined by $V = x^2 y + 5y^2 z$. Volt. Find:
 - i- The volume charge density establishes this field.
 - ii- The electric field intensity and the potential at point P (1, 3, 2).
 - iii-The potential difference between A (1, 2, 3) and B (2, 3, 1).
 - iv- The total charge inside cube defined by 0 < x, y, z < 3.

(10 Marks)

PROBLEM # Four (20 mark)

- I. Define Figure of merit, Explain why it is important to study system noise?
- II. Deduce then Compare between figures of merit of DSB-SC and envelop detector receiver model.

Good Luck,

Dr. Salwa Scrag Eldin

لا تحسبن العلم ينفع وحده ما لم يتوج ربه بخلاق

TANTA UNIVERSITY

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRONICS & ELECTRICAL COMMUNICATIONF EXAMINATION (SECOND YEAR)

	COURSE TITLE	COURSE CODE: EEC 2102	
DATE:20/1/2012	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED: 3 HOURS

Answer the following questions

PROBLEM # ONE (25mark)

State whether the following statements are true or false, comment on your Answers

- a. The Energy for nonperiodic signals is infinite.
- b. Autocorrelation is the Fourier transform for energy spectral density.
- c. Baseband signal generated by information source is suitable for transmission over free space.
- d. Percentage modulation should be greater than 100% for proper transmission of AM.
- e. Square law detector is used when the baseband signal is weak.
- f. Costas loop is used to compensate for phase shift between transmission and receiver.
- g. Single sideband (SSB) is used in broadcasting communications.
- h. Vestigial sideband is used for TV picture transmission while FM is used for sound transmission.
- i. AM is less susceptible for noise than FM signal.
- j. Coherent detection is better than envelope detection from noise point of view.

PROBLEM # TWO (22 mark)

- I. Write short notes about the following:
 - a. Linear and nonlinear modulation.
 - b. Energy and power signals.
 - c. Bandwidth in different AM modulation techniques.
 - d. Interrelation between frequency modulation and phase modulation.
 - e. Frequency deviation and phase deviation.
 - f. Overmodulation distortion.
- II. Find Fourier transform for the following signals
 - a. rect(t/10) u(2-t)
 - b. rect((t-1)/2)+tri((t-3)/3)
 - c. $3\text{sgn}(t-t_0)$
 - d. 10 sinc (10t)

PROBLEM # THREE (33 mark)

- I. Define and represent the AM signal mathematically in time and frequency domain.
- II. If it is required to transmit the baseband signal m(t)=30 Cos $(2\pi x 10^4 t)$ via DSBSC system using the carrier c(t)=100 Cos $(2\pi x 10^6 t)$:
 - a. Draw the block diagram of the system (transmitter and receiver).
 - b. Evaluate the total transmitted power and occupied bandwidth.
- III. Describe, using diagram and equations, a method for WBFM demodulation.
- IV. Write an expression for the narrow band FM signal. In what way do a standard AM wave and NBFM differ from each other?